Multiscale GLasso
mglasso.Rmd
Inference of Multiscale Gaussian Graphical Models.
Basic Usage
- Simulate some block diagonal model
library(Matrix)
n = 50
K = 3
p = 9
rho = 0.85
blocs <- list()
for (j in 1:K) {
bloc <- matrix(rho, nrow = p/K, ncol = p/K)
for(i in 1:(p/K)) { bloc[i,i] <- 1 }
blocs[[j]] <- bloc
}
mat.covariance <- Matrix::bdiag(blocs)
Matrix::image(mat.covariance)
1.1 True cluster partition
rep(1:3, each = 3)
1.2. Simulate gaussian data from the covariance matrix
- Launch algorithm
- Plot results compact version
3.1 Estimated regression vectors
plot_mglasso(res)
level9
denotes a partition with 9
clusters. We observe a shrinkage effect in the estimated coefficients due to the fuse-group lasso penalty parameter.
3.2 Estimated clustering partitions
res$out$level9$clusters
res$out$level7$clusters
res$out$level4$clusters
res$out$level3$clusters
res$out$level1$clusters
The uncovered partition obtained while increasing \(\lambda_2\) is a hierarchical partition under some constraints.
Reference
Edmond, Sanou; Christophe, Ambroise; Geneviève, Robin; (2022): Inference of Multiscale Gaussian Graphical Model. ArXiv. Preprint. https://doi.org/10.48550/arXiv.2202.05775